
Welcome back to Cuemath Valley!

Last month we learned that the number of COVID-19 cases is growing
exponentially because the virus reproduction number R0 is greater than 1.

This month we are exploring strategies to bring R0 below 1, which would not
only end exponential growth, but also bring the pandemic to an end!

In this document for parents and educators, we will summarize the key
takeaways from each section, and also o�er suggestions for further
exploration for you and your child or student.

SECTION 1:

In Section 1 of this month’s activity, we reviewed infection
trees and the virus reproduction number R0.



Remember R0 is defined to be the average number of new people who contract
the virus from an infected person.

And infection trees provide a very nice way to visualize R0. In particular,
infection trees show just how drastically the growth rate of the infection
changes based on a small change in R0.

It is important to note that R0 is not fixed, but varies based on the changes we
make and the precautions we follow.

As a further exploration, you can try looking up the current value of R0 in
di�erent parts of the world, and perhaps where you live.  Here are some links
to help you get started:

http://metrics.covid19-analysis.org/

https://rt.live/

SECTION 2:

In Section 2 we asked how we can go about increasing or
decreasing R0.  The key idea is that we can break R0 down
as the product of two factors:

R0 = A B, where×

http://metrics.covid19-analysis.org/
https://rt.live/


A = the average number of other people an infected person has close encounters
with while they are contagious, and

B = the average chance of infection during any close encounter.

Since R0 is the product of A and B, it follows that R0 is directly proportional to
both A and B.  Thus, multiplying either A or B by any number will multiply R0

by that same number!

This gives us two strategies for reducing R0:

1. We can reduce A, the number of people an infected person meets, via
social distancing.

2. Or we can reduce B, the chance of infection during any meeting, using
widespread face masks.

As further exploration, you can learn about how these strategies pan out with
other epidemics.  R0 is also directly proportional to the number of days an
infected person is contagious.  So a third strategy is to use medication to reduce
that number.  In fact, this is exactly the strategy many anti-retroviral drugs
use to reduce R0 in the case of HIV.  If you’re interested, here’s a good
document to begin your exploration with:

https://web.stanford.edu/~jhj1/teachingdocs/Jones-Epidemics050308.pdf

SECTION 3:

Section 3 explored social distancing as a way to reduce R0, by
reducing the number of people an infected person comes into close
contact with.

In o�ces or classrooms, social distancing becomes a geometry
problem of e�ciently arranging desks so that we can fit as many
people as possible while still maintaining a safe distance.

https://web.stanford.edu/~jhj1/teachingdocs/Jones-Epidemics050308.pdf


In other words, it becomes a circle-packing problem!  Mathematicians proved
in the 1940’s that the hexagonal packing used by honeybees is the most
e�cient circle packing, with the greatest packing density.

But that’s only the beginning of the story!  As further exploration, you can
learn about circle packing in higher dimensions.  In three dimensions the
problem becomes one of sphere packing.  For example, what is the most
e�cient way to pack tennis balls, or oranges.  It may sound simple, but the
answers are surprising.

Here is a nice article to get you started, relating circle packing to social
distancing but also exploring the higher dimensional analogues.

https://www.quantamagazine.org/the-math-of-social-distancing-is-a-less
on-in-geometry-20200713

SECTION 4:

In the real world, social distancing alone can only reduce R0 so
much.  Humans are social creatures after all!  But with face
masks we can dramatically reduce the chance of infection in any
meeting.

In fact, face masks are much more e�ective than you might have
guessed.  If a simple cloth face mask is worn properly, it blocks
out 60% of the viruses that try to pass through it, and hence
allows only 40% through.

But face masks filter viruses on both inhalation and exhalation!
So only 16% of the viruses will make it from one person to another, provided
they are both wearing 60% e�ective masks, since 40% of 40% is 16%.  If two
people are both wearing face masks, the impact squares!

https://www.quantamagazine.org/the-math-of-social-distancing-is-a-lesson-in-geometry-20200713
https://www.quantamagazine.org/the-math-of-social-distancing-is-a-lesson-in-geometry-20200713


For further exploration, you can try taking a more hands on approach to the
probabilities discussed so far, and in doing so also explore the Law of Large
Numbers, which has been secretly at play.

Here are two activities to get you started:

1. Get out a coin and imagine a mask with 50% e�ectiveness, so each time
a virus tries to pass through, there is a 50% chance it gets stuck, and a
50% chance it succeeds.  Suppose 10 viruses are trying to get through
the mask.  Let’s do an experiment: flip the coin 10 times to see how
many of the 10 viruses succeed.

You can’t predict the outcome of the experiment without actually doing
it!  Our intuition tells us 5 is the most likely number, but if you actually
try the experiment, you may get a di�erent number!  So here is your
task: do the experiment 10 times and record the result of each
experiment (this will involve a total of 100 coin flips).  Now, average
your ten numbers.

You’ve just seen the Law of Large Numbers at work, since the average
will be closer to the expected value of 5. If you were to do 100
experiments and average the results, you would get even closer still!
And that’s a hint of why, when we’re dealing with 100 million viruses,
we can assume half of them get through a mask with 50% e�ectiveness.

2. Now let’s try to understand why with two masks the e�ectiveness
squares.  Imagine two masks, each with 50% e�ectiveness, and find
two coins, one for each mask.  Each time a virus attempts to pass
through both masks, it must get a heads on each coin to succeed.  If
either coin comes out tails the virus will fail to pass through.

This time let’s just imagine 10 viruses trying to pass through both
masks.  How many make it through?  You’ll have to flip both coins 10
times to find out.  Because 10 is a small number, the answer may not be
close to the expected number of 2.5.  But this experiment helps give you
a sense of why the probability squares, resulting in just a 25% chance
that any given virus will make it through.



SECTION 5:

As Dr. Atul Gawande wrote in The New Yorker,

“ if at least 60% of the population wore masks that
were just 60% e�ective in blocking viral
transmission—which a well- fitting, two-layer cotton
mask is —the epidemic could be stopped.”

In Section 5, we put everything together to create a very basic
simulation of the pandemic, in order to see why Dr. Atul Gawande’s statement
is true.

It turns out that if 60% of people wear a 60% e�ective mask, then the average
chance of infection is cut to just 41% of what it would have been without
masks.  And since R0 is directly proportional to the chance of infection, R0 is
also multiplied by 0.41.

This gives us a strategy for ending the pandemic.  With social distancing we
can bring R0 down to 2, and then with 60% of people wearing 60% e�ective
masks, we can bring R0 down to 0.82.

As further exploration, you can look at how this model can be made more
realistic, and also explore how changing the parameters of the model a�ects
the outcome.

One simplifying assumption we made is that masks are equally e�ective on
inhalation and exhalation.  In reality the percent of viruses blocked on
inhalation and exhalation may di�er.



If you’d like to explore these ideas further, there is a very nice interactive
version of this model in which you can adjust the parameters and see the
e�ect on R0:

https://aatishb.com/howmaskswork

https://aatishb.com/howmaskswork

