WORKSHEET 3

INTRODUCTION TO TOPOLOGY

Problem 1. Determine $\operatorname{Int}(A), \mathrm{Cl}(A)$, and ∂A in each case.
(a) $A=(0,1]$ in lower limit topology on \mathbb{R}.
(b) $A=\{a\}$ in $X=\{a, b, c\}$ with topology $\{X, \varnothing,\{a\},\{a, b\}\}$.
(c) $A=\{a, c\}$ in $X=\{a, b, c\}$ with topology $\{X, \varnothing,\{a\},\{a, b\}\}$.
(d) $A=(-1,1) \cup\{2\}$ in the standard topology on \mathbb{R}.

Problem 2. Prove that $\mathrm{Cl}(\mathbb{Q})=\mathbb{R}$ in the standard topology on \mathbb{R}.
Problem 3. Let X be a topological space, A a subset of X, and y an element of X. Prove that $y \in \mathrm{Cl}(A)$ if and only if every open set containing y intersects A.
Problem 4. In each case, determine whether the relation in the blank is \subset, \supset, or $=$. In cases where equality does not hold, provide an example indicating so.
(a) $\mathrm{Cl}(A) \cap \mathrm{Cl}(B) \ldots \quad \mathrm{Cl}(A \cap B)$.
(b) $\mathrm{Cl}(A) \cup \mathrm{Cl}(B) \quad _\quad \mathrm{Cl}(A \cup B)$.

Problem 5. Determine the set of limit points of
(a) the the interval $[0,1]$ in the finite complement topology on \mathbb{R}.
(b) the set $A=\left\{\left.\frac{1}{m}+\frac{1}{n} \in \mathbb{R} \right\rvert\, m, n \in \mathbb{Z}_{+}\right\}$in the standard topology on \mathbb{R}.
(c) the set $S=\left\{\left.\left(x, \sin \left(\frac{1}{x}\right)\right) \in \mathbb{R}^{2} \right\rvert\, 0<x \leq 1\right\}$ as a subset of \mathbb{R}^{2} in the standard topology.

Problem 6. Let A be a subset of \mathbb{R}^{2} in the standard topology. Prove that if x is a limit point of A, then there is a sequence of points in A that converges to x.
Problem 7. Determine ∂A where $A=[0,1]$ in the finite complement topology on \mathbb{R}.

