WORKSHEET 3

INTRODUCTION TO TOPOLOGY

Problem 1. Determine Int(A), Cl(A), and ∂A in each case.

(a) A = (0, 1] in lower limit topology on \mathbb{R} .

(b) $A = \{a\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}$.

- (c) $A = \{a, c\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}$.
- (d) $A = (-1, 1) \cup \{2\}$ in the standard topology on \mathbb{R} .

Problem 2. Prove that $Cl(\mathbb{Q}) = \mathbb{R}$ in the standard topology on \mathbb{R} .

Problem 3. Let X be a topological space, A a subset of X, and y an element of X. Prove that $y \in Cl(A)$ if and only if every open set containing y intersects A.

Problem 4. In each case, determine whether the relation in the blank is \subset , \supset , or =. In cases where equality does not hold, provide an example indicating so.

(a) $\operatorname{Cl}(A) \cap \operatorname{Cl}(B)$ $\operatorname{Cl}(A \cap B)$.

(b) $\operatorname{Cl}(A) \cup \operatorname{Cl}(B) _ \operatorname{Cl}(A \cup B).$

Problem 5. Determine the set of limit points of

- (a) the the interval [0,1] in the finite complement topology on \mathbb{R} .
- (b) the set $A = \{\frac{1}{m} + \frac{1}{n} \in \mathbb{R} | m, n \in \mathbb{Z}_+\}$ in the standard topology on \mathbb{R} . (c) the set $S = \{(x, \sin(\frac{1}{x})) \in \mathbb{R}^2 | 0 < x \le 1\}$ as a subset of \mathbb{R}^2 in the standard topology.

Problem 6. Let A be a subset of \mathbb{R}^2 in the standard topology. Prove that if x is a limit point of A, then there is a sequence of points in A that converges to x.

Problem 7. Determine ∂A where A = [0, 1] in the finite complement topology on \mathbb{R} .

Date: January 27, 2016.