PROBLEM SET 10

INTRO TO REAL ANALYSIS

Problem 1. Recall that a function $f: A \to \mathbb{R}$ is *Lipschitz* on A if there exists an M > 0 such that

$$\left|\frac{f(x) - f(y)}{x - y}\right| \le M$$

for all $x \neq y$ in A.

- (a) Show that if f is differentiable on a closed interval [a, b] and if f' is continuous on [a, b], then f is Lipschitz on [a, b].
- (b) The function f is contractive if there is a constant c such that 0 < c < 1 and $|f(x) f(y)| \le c|x y|$ for all $x, y \in A$. If we add the assumption that |f'(x)| < 1 on [a, b], does it follow that f is contractive on this set?

Problem 2. Let f be differentiable on an interval A. If $f'(x) \neq 0$ on A, show that f is one-to-one on A. Provide an example to show that the converse statement need not be true.

Problem 3. A fixed point of a function f is a value x where f(x) = x. Show that if f is differentiable on an interval throughout which we have $f'(x) \neq 1$, then f can have at most one fixed point.

Problem 4. Suppose f and g are continuous functions on an interval containing a, and that f and g are differentiable on this interval (including at a). Moreover, suppose that f(a) = g(a) = 0, that f' and g' are continuous at a, and that $g'(x) \neq 0$ throughout the interval (including at a). Find a short proof that

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \text{ implies } \lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Problem 5. Let $f : [a, b] \to \mathbb{R}$ be a one-to-one function that is both continuous and differentiable on [a, b]. Show that if $f'(x) \neq 0$ for all $x \in [a, b]$, then f^{-1} is differentiable on the range of f, with

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$
 where $y = f(x)$.

*All questions taken from Understanding Analysis: 2nd Edition by Stephen Abbott.

Date: October 30, 2017.