PROBLEM SET 12

INTRO TO REAL ANALYSIS

Problem 1. Let

$$g(x) = \frac{nx + x^2}{2n},$$

and set $g(x) = \lim g_n(x)$. Show that g is differentiable in two ways:

- (a) Compute g(x) by algebraically taking the limit as $n \to \infty$ and then find g'(x).
- (b) Compute $g'_n(x)$ for each $n \in \mathbb{N}$ and show that the sequence of derivatives (g'_n) converges uniformly on every interval [-M, M]. Cite the appropriate theorem to conclude that g'(x) = $\lim g'_n(x).$

Problem 2. Decide whether each proposition is true or false, providing a short justification or counterexample as appropriate.

- (a) If ∑_{n=1}[∞] g_n converges uniformly, then (g_n) converges uniformly to zero.
 (b) If 0 ≤ f_n(x) ≤ g_n(x) and ∑_{n=1}[∞] g_n converges uniformly, then ∑_{n=1}[∞] f_n converges uniformly.
 (c) If ∑_{n=1}[∞] f_n converges uniformly on A, then there exist constants M_n such that |f_n(x)| ≤ M_n for all x ∈ A and ∑_{n=1}[∞] M_n converges.

Problem 3. (a) Prove that

$$h(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2} = x + \frac{x^2}{4} + \frac{x^3}{9} + \cdots$$

is continuous on [-1, 1].

(b) Note that the series

$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$$

converges for every x in the interval [-1,1) but does not converge when x = 1. For a fixed $x_0 \in (-1, 1)$, explain how we can still use the Weierstrass M-Test to prove that f is continuous at x_0 .

Problem 4. Let

$$f(x) = \frac{1}{x} - \frac{1}{x+1} + \frac{1}{x+2} - \frac{1}{x+3} + \cdots$$

Show that f is defined for all x > 0. Is f continuous on $(0, \infty)$? Is f differentiable?

Problem 5. Let $\{r_1, r_2, \ldots\}$ be an enumeration of the set of rational numbers. For each $r_n \in \mathbb{Q}$, define

$$u_n(x) = \begin{cases} 1/2^n & \text{for } x > r_n \\ 0 & \text{for } x \le r_n. \end{cases}$$

Let $h(x) = \sum_{n=1}^{\infty} u_n(x)$. Prove that h is a monotone function defined on all of \mathbb{R} that is continuous at every irrational point.

*All questions taken from Understanding Analysis: 2nd Edition by Stephen Abbott.

Date: November 12, 2017.