PROBLEM SET 8

INTRO TO REAL ANALYSIS

Problem 1. Assume f and g are defined on all of \mathbb{R} and that $\lim_{x \to p} f(x) = q$ and $\lim_{x \to q} g(x) = r$. (a) Give an example to show that it may not be the case that

$$\lim_{x \to p} g(f(x)) = r.$$

- (b) Show that the result in (a) does follow if we assume f and g are continuous.
- (c) Does the result in (a) hold if we only assume f is continuous? What if we only assume g is continuous?

Problem 2. Show whether or not the following functions are *uniformly* continuous on the interval (0, 1).

(a) f(x) = 1/x. (b) $g(x) = \sqrt{x^2 + 1}$. (c) $h(x) = x \sin(1/x)$.

Problem 3. A function $f: A \to \mathbb{R}$ is called *Lipschitz* if there exists a bound M > 0 such that

$$\left|\frac{f(x) - f(y)}{x - y}\right| \le M$$

for all $x \neq y \in A$. In other words, there is a uniform bound on the magnitude of the slopes of lines drawn through any two points on the graph of f.

(a) Show that if $f: A \to \mathbb{R}$ is Lipschitz, then it is uniformly continuous on A.

(b) Does the converse hold? I.e. are uniformly continuous functions necessarily Lipschitz?

Problem 4. Let f be a continuous one-to-one function from an interval A to \mathbb{R} .

- (a) Show that f is monotone.
- (b) Show that f^{-1} is continuous.

The following problem is optional. It will not contribute to or detract from your grade, but you are encouraged to attempt it.

- **Challenge 1.** (a) Let g be defined on all of \mathbb{R} . Show that g is continuous if and only if $g^{-1}(U)$ is open whenever $U \subset \mathbb{R}$ is open.
- (b) Let f be a continuous function defined on all of \mathbb{R} . Suppose B is a set with property $\blacklozenge \in \{\text{finite, compact, bounded, closed}\}$. Does $q^{-1}(B)$ have property \blacklozenge ?

*All questions taken from Understanding Analysis: 2nd Edition by Stephen Abbott.

Date: October 16, 2017.