PROBLEM SET 4

ANALYSIS II

Problem 1. Prove that any linear transformation from $\mathbb{R}^m \to \mathbb{R}^n$ is continuous.

Problem 2. Suppose f is a function from a metric space (X, d_X) to a metric space (Y, d_Y) . Prove that f is continuous if and only if $f^{-1}(U)$ is open in X for every open set U of Y.

Problem 3. (a) Show that if Q is a rectangle, then Q equals the closure of IntQ.

- (b) If D is a closed set, what is the relation in general between the set D and the closure of IntD?
- (c) If U is an open set, what is the relation in general between the set U and the interior of the closure of U?

Problem 4. Let $A = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } 0 < y < x^2\}.$

- (a) Show that every straight line through (0,0) contains an interval around (0,0) which is in $\mathbb{R}^2 \setminus A$.
- (b) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \notin A, \text{ and} \\ 1 & \text{if } x \in A. \end{cases}$$

For $h \in \mathbb{R}^2$ define $g_h : \mathbb{R} \to \mathbb{R}$ by $g_h(t) = f(th)$. Show that each g_h is continuous at 0, but f is not continuous at (0, 0).

Problem 5. Let $\mathbb{R}^{\infty} = \bigcup_{n=1}^{\infty} \mathbb{R}^n$ where we consider the natural inclusions $\mathbb{R}^n \subset \mathbb{R}^{n+1}$. (You can also think of this as those elements of \mathbb{R}^{ω} with finitely many nonzero entries.) Note that the dot product gives a well-defined inner product on \mathbb{R}^{∞} , and hence induces a metric. Define $e_i = (0, 0, \ldots, 0, 1, 0, 0, \ldots)$ where 1 appears in the *i*th place. Prove that $X := \{e_i : i \in \mathbb{N}\}$ forms a basis for \mathbb{R}^{∞} , and that X is closed, bounded, and noncompact.

Challenge 1. Let (X, d) be a metric space. Show that a subset $A \subset X$ is compact (i.e. every open cover of A has a finite subcover) if and only if A is sequentially compact (i.e. every sequence in A has a subsequence that converges to a point in A).

*All questions taken from *Analysis on Manifolds* by James Munkres and *Calculus on Manifolds* by Michael Spivak.

Date: January 30, 2018.