PROBLEM SET 5

ANALYSIS II

Problem 1. Consider a function $f : \mathbb{R}^2 \to \mathbb{R}$ such that f(0,0) = 0 and f(x,y) = h(x,y) for one of the following expressions h when $(x,y) \neq (0,0)$. Analyze the behavior of each function f at $\mathbf{0} = (0,0)$. In particular, determine for which vectors \mathbf{u} the directional derivative $f'(\mathbf{0},\mathbf{u})$ exists, evaluate it for those \mathbf{u} , determine $Df(\mathbf{0})$ (if it exists), and determine whether f is continuous at $\mathbf{0}$.

- (a) $\frac{xy}{x^2+y^2}$ (b) $\frac{x^2y^2}{x^2y^2+(y-x)^2}$ (c) $\frac{x^3}{x^2+y^2}$
- (d) |x| + |y|
- (e) $|xy|^{1/2}$
- (f) $\frac{x|y|}{\sqrt{x^2+y^2}}$

Problem 2. For each of the following functions $f : \mathbb{R}^n \to \mathbb{R}^n$, determine Df and detDf, and sketch the image of the given set S under f.

- (a) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$, defined by $f(r, \theta) = (r \cos \theta, r \sin \theta)$. Let $S = [1, 2] \times [0, \pi]$.
- (b) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$, defined by $f(x, y) = (x^2 y^2, 2xy)$. Let $S = \{(x, y) : x^2 + y^2 \le a, x \ge 0, y \ge 0\}$, for some positive real number a.
- (c) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$, defined by $f(x, y) = (e^x \cos y, e^x \sin y)$. Let $S = [0, 1] \times [0, \pi]$.
- (d) Let $f : \mathbb{R}^3 \to \mathbb{R}^3$, defined by $f(\rho, \phi, \theta) = (\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi)$. Let $S = [1, 2] \times [0, \pi/2] \times [0, \pi/2]$.

*All questions taken from *Analysis on Manifolds* by James Munkres and *Calculus on Manifolds* by Michael Spivak.

Date: February 6, 2018.