PROBLEM SET 7

ANALYSIS II

Problem 1. Suppose $f^{-1}(c)$ is a regular level set of a smooth function $f : A \subset \mathbb{R}^{k+n} \to \mathbb{R}^n$. Take $(a,b) \in f^{-1}(c)$. By the implicit function theorem, there exists a smooth function $g : U \subset \mathbb{R}^k \to \mathbb{R}^n$ on an open set U containing a, such that $g(U) \subset f^{-1}(c)$ and g(a) = b. Recall that the tangent space $T_{(a,b)}f^{-1}(c) \subset T_{(a,b)}\mathbb{R}^{k+n}$ is defined to be the orthogonal complement of the row space of Df(a,b) (i.e. the kernel of the linear transformation $y \mapsto Df(a,b)y$). Show that $T_{(a,b)}f^{-1}(c)$ is also equal to the column space of DG(a), where $G : \mathbb{R}^k \to \mathbb{R}^{k+n}$ is defined by $x \mapsto (x, g(x))$.

Problem 2. Give a basis for the tangent space and the normal space of the set S at the point p. Also give equations defining the tangent space and the normal space as a subset of \mathbb{R}^m .

(a) Let S be the intersection of the surfaces $x^2 + y^2 - z^2 = 1$ and x + y + z = 5 in \mathbb{R}^3 . Let p = (1, 2, 2).

(b) Let S be the surface $z = \ln(\sqrt{x^2 + y^2})$, and let $p = (1, -1, \ln(2)/2)$.

Problem 3. Use the method of Lagrange multipliers to

- (1) find the minimum value of $x^2 + y^2 + z^2$ subject to the constraints x + y z = 0 and x + 3y + z = 2.
- (2) find the minimum value of xyz on $f^{-1}(1) \cap \{(x, y, z) : x > 0, y > 0, z > 0\}$, where

$$f(x, y, z) = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}.$$

- **Problem 4.** (a) Let $f : \mathbb{R}^{2n} \to \mathbb{R}$ be the Euclidean dot product of the first *n* variables with the last; i.e. $f(x, y) = \langle x, y \rangle$. Use the method of Lagrange multipliers to show that $|f(x, y)| \le 1$ on the set $S = \{(x, y) : ||x||^2 = ||y||^2 = 1\}$.
- (b) Use the previous part to prove the Cauchy Schwartz Inequality. In particular, for arbitrary x and y in \mathbb{R}^n , show that $|f(x,y)|^2 \leq ||x||^2 \cdot ||y||^2$.

Problem 5. Show that the function xyz(x + y + z - 1) has one non-degenerate critical point and an infinite set of degenerate critical points. Show that the non-degenerate critical point is a local minimum.

Date: March 14, 2018.