PROBLEM SET 8

ANALYSIS II

- **Problem 1.** (a) Given a symmetric $m \times m$ matrix A, let $Q_A : \mathbb{R}^m \to \mathbb{R}$ be defined by $x \mapsto x^t A x$. Show that $\nabla Q_A(x) = 2Ax$, for any $x \in \mathbb{R}^m$.
- (b) Let $\phi : \mathbb{R}^m \to \mathbb{R}$ be a function of class C^2 . Let x be a critical point of ϕ (i.e. suppose $\nabla \phi(x) = 0$). Let

$$
H(x) = \left(\frac{\partial^2 \phi}{\partial x_i \partial x_j}(x)\right)
$$

be the Hessian of ϕ at x. In class we defined $\frac{\partial^2 \phi}{\partial v^2}(x)$ to be $\frac{d^2}{dt^2}[\phi(x+tv)]_{t=0}$. Prove that

$$
\frac{\partial^2 \phi}{\partial v^2}(x) = v^t H(x)v
$$

for any $v \in \mathbb{R}^m$. (Hint: it will be useful to prove that $\frac{\partial^2 \phi}{\partial v^2}(x) = \frac{\partial}{\partial v}(\frac{\partial}{\partial v}\phi)(x)$.)

Problem 2. Prove the second order Taylor's theorem discussed in class. Namely, let $B = U(a, \epsilon) \subset$ \mathbb{R}^m be an open ball centered at a point a in \mathbb{R}^m , and suppose $f : B \to \mathbb{R}$ is of class C^2 . Show that for any $x \in B$, we have

$$
f(x) = f(a) + (x - a)^{t} \nabla f(a) + \frac{1}{2}(x - a)^{t} H(b)(x - a),
$$

for some b on the line segment joining a to x, where $H(b)$ denotes the Hessian of f at b.

Problem 3. In class we defined the *operator norm* on the set of $m \times m$ matrices by

$$
||A|| := \sup{||Ax||/||x|| : x \in \mathbb{R}^m} = \sup{||Ax|| : x \in S^{m-1}},
$$

where $||v||$ denotes the Euclidean norm on $v \in \mathbb{R}^m$. Prove that:

- (a) The operator norm is indeed a norm.
- (b) The operator norm is a *continuous* function from \mathbb{R}^{m^2} to R (here, we identify the set of $m \times m$ matrices with the Euclidean space \mathbb{R}^{m^2}).

Problem 4. Suppose A is a symmetric $m \times m$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_m$. Moreover, suppose the eigenvalues are indexed so that $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_m|$. Show that $||A|| = |\lambda_1|$.

Problem 5. Prove the second derivative test. Namely, let $U \subset \mathbb{R}^m$ be an open set. Suppose $\phi: U \to \mathbb{R}$ is of class C^2 , and that $\nabla \phi(x) = 0$ for some x in U. Show that if $\frac{\partial^2 \phi}{\partial v^2}(x) > 0$ for any $v \in \mathbb{R}^m$ then ϕ attains a local minimum at x. (By local minimum, we mean that ϕ takes strictly greater values in some deleted neighborhood of x .)

Date: March 29, 2018.