TUTORIAL 2

ANALYSIS II

Problem 1. Let x and y be vectors in \mathbb{R}^n .

- (a) For which values of x and y do we have ||x + y|| = ||x|| + ||y||?
- (b) For which values of x and y do we have $||x + y||^2 = ||x||^2 + ||y||^2$?

Problem 2. For each of the following matrices,

- $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix},$
- (a) Compute the reduced row echelon form, and determine the rank of the matrix.
- (b) Give an example of a kernel element of the associated map T_A .
- (c) Find bases for \mathbb{R}^m and \mathbb{R}^n so that the matrix representation of T_A is

$[\mathbf{I}_p]$	0	
0	0	,

for some p.

Problem 3. Let T be a linear transformation from \mathbb{R}^m to \mathbb{R}^n , and consider the usual Euclidean inner product on both spaces.

- (a) Prove that T is norm preserving (i.e. ||T(x)|| = ||x|| for all $x \in V$) if and only if T is inner product preserving (i.e. $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$).
- (b) Prove that T must be 1 1 in this case.

Problem 4. Recall that in Euclidean space, the angle $\theta(x, y)$ between nonzero vectors x and y is related to their inner product by

$$\cos(\theta(x,y)) = \frac{\langle x,y \rangle}{||x|| \cdot ||y||}.$$

We say a linear transformation T is angle preserving if it is 1-1 and $\theta(Tx,Ty) = \theta(x,y)$ for all nonzero vectors x and y.

- (1) Prove that if T is norm preserving, then it is angle preserving.
- (2) Give an example of an angle preserving map that is not norm preserving.
- (3) Describe all angle preserving maps.

Problem 5. If $T : \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation, show that there is a number M such that $||T(x)|| \le M||x||$ for all $x \in \mathbb{R}^m$.

Problem 6. Let X denote \mathbb{R}^2 endowed with the Euclidean metric, and let Y denote \mathbb{R}^2 endowed with the sup metric. Let U be a subset of \mathbb{R}^2 . Prove that U is an open set in X if and only if U is an open set in Y. (This shows that X and Y induce the same *topology* on \mathbb{R}^2).

Problem 7. Let $\mathbb{R}^{\infty} = \bigcup_{n=1}^{\infty} \mathbb{R}^n$ where we consider the natural inclusions $\mathbb{R}^n \subset \mathbb{R}^{n+1}$. (You can also think of this as those elements of \mathbb{R}^{ω} with finitely many nonzero entries.) Note that the dot product gives a well-defined inner product on \mathbb{R}^{∞} , and hence induces a metric. Define $e_i = (0, 0, \ldots, 0, 1, 0, 0, \ldots)$ where 1 appears in the *i*th place. Prove that $X := \{e_i : i \in \mathbb{N}\}$ forms a basis for \mathbb{R}^{∞} , and that X is closed, bounded, and noncompact.

*All questions taken from *Analysis on Manifolds* by James Munkres and *Calculus on Manifolds* by Michael Spivak.

Date: Jan 23, 2018.