PROBLEM SET 12

INTRODUCTION TO MANIFOLDS

Suppose M is a connected non-orientable smooth manifold with atlas $\mathcal{A} = \{(U_{\alpha}, \phi_{\alpha} = (x_{\alpha}^{1}, \dots, x_{\alpha}^{n}))\}$. Consider the set

$$\widetilde{M} := \bigsqcup_{p \in M} \{ \text{orientations of } T_p M \}$$

and let $\pi: \widetilde{M} \to M$ be the projection $[\omega_p] \mapsto p$. Here are four problems to help you understand the orientation covering \widetilde{M} .

Problem 1. For every α , let

$$U_{\alpha}^{+} = \{\phi_{\alpha}^{*}[dx_{\alpha}^{1} \wedge \ldots \wedge dx^{n}]_{p} : p \in U_{\alpha}\}$$

and let

$$U_{\alpha}^{-} = \{\phi_{\alpha}^{*}[-dx_{\alpha}^{1} \wedge \ldots \wedge dx^{n}]_{p} : p \in U_{\alpha}\}.$$

For any α , let $\bar{\phi}_{\alpha} := (-x_{\alpha}^1, x_{\alpha}^2, \dots, x_{\alpha}^n)$ be the opposite orientation chart to ϕ_{α} . Show that the collection

$$\mathcal{A} := \{ (U_{\alpha}^+, \phi_{\alpha}^+ := \phi_{\alpha} \circ \pi) \} \cup \{ (U_{\alpha}^-, \phi_{\alpha}^- := \phi_{\alpha} \circ \pi) \}$$

gives \widetilde{M} the structure of a smooth manifold.

Problem 2. Show that \widetilde{A} is an *oriented* atlas on \widetilde{M} (i.e., whenever two sets U_{α}^{\pm} and U_{β}^{\pm} intersect, the transition map $\phi_{\beta}^{\pm} \circ (\phi_{\alpha}^{\pm})^{-1}$ is orientation preserving).

Problem 3. Show that the manifold \widetilde{M} is connected.

Problem 4. Describe the oriented atlas $\widetilde{\mathcal{A}}$ on \widetilde{M} in the special case where M is a Möbius strip and \mathcal{A} consists of two charts on M.

Now let $\alpha : \widetilde{M} \to \widetilde{M}$ be the map that interchanges the two points in each fiber of π . The following two problems will determine the top cohomology of the non-orientable manifold M.

Problem 5. Prove that α is an orientation-reversing diffeomorphism of M.

Problem 6. Now suppose M has dimension n. Since \widetilde{M} is orientable, there exists an isomorphism from $H^n(\widetilde{M})$ to \mathbb{R} defined by

$$[\omega]\mapsto \int_{\widetilde{M}}\omega$$

by a result mentioned in class. Assuming this isomorphism, prove that $H^n(M) = 0$.

The following three problems relate to integral curves and flows, and are taken from Chapter 12 of [Lee].

Problem 7. Recall that a vector field is *complete* if it generates a global flow; i.e. if all integral curves are defined for all $t \in \mathbb{R}$. Show that every smooth vector field with compact support is complete.

Problem 8. Let M be a connected smooth manifold. Show that the group of diffeomorphisms of M acts transitively on M. (For hints see Problem 12.3 in [Lee].)

Problem 9. Let θ be a flow on an oriented manifold. Show that for each $t \in \mathbb{R}$, θ_t is orientation-preserving wherever it is defined.

Date: November 16, 2015.