PROBLEM SET 6

INTRODUCTION TO MANIFOLDS

Note that this problem set will not be collected. Nevertheless, it is recommended that you work out all of these problems.

Problem 1. Prove that if N is a compact manifold, then a one-to-one immersion $f: N \to M$ is an embedding.

Problem 2. Let $(U, \phi) = (U, x^1, \dots, x^n)$ and $(V, \psi) = (V, y^1, \dots, y^n)$ be overlapping coordinate charts on a manifold N. They induce coordinate charts $(TU, \tilde{\phi})$ and $(TV, \tilde{\psi})$ on the tangent bundle TN, where $\tilde{\phi} = (x^1, \dots, x^n, a^1, \dots, a^n)$ and $\tilde{\psi} = (y^1, \dots, y^n, b^1, \dots, b^n)$.

- (1) Compute the Jacobian matrix $J(\tilde{\psi} \circ \tilde{\phi}^{-1})|_{\tilde{\phi}(v_n)}$ of the transition function $\tilde{\psi} \circ \tilde{\phi}^{-1}$ at a point $\tilde{\phi}(v_p)$, where v_p is some point in TN.
- (2) Show that

$$\det J(\tilde{\psi} \circ \tilde{\phi}^{-1})|_{\tilde{\phi}(v_p)} = \left(\det J(\psi \circ \phi^{-1})|_{\phi(p)}\right)^2.$$

Problem 3. (a) Let X be the vector field $x \frac{d}{dx}$ on \mathbb{R} . For each $p \in \mathbb{R}$, find the maximal integral curve c(t) of X with c(0) = p. (b) Let X be the vector field $x^2 \frac{d}{dx}$ on \mathbb{R} . For each $p \in \mathbb{R}_{>0}$, find the maximal integral curve c(t) of

X with c(0) = p.

Problem 4. Consider two smooth vector fields X, Y on \mathbb{R}^n :

$$X = \sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}}, \quad Y = \sum_{i=1}^{n} b^{i} \frac{\partial}{\partial x^{i}},$$

where a^i, b^i are smooth functions on \mathbb{R}^n . Since [X, Y] is also a smooth vector field on \mathbb{R}^n ,

$$[X,Y] = \sum_{k=1}^{n} c^k \frac{\partial}{\partial x^k}$$

for some smooth functions c^k on \mathbb{R}^n . Find a formula for c^k in terms of a^i and b^i .

Problem 5. Let $F: N \to M$ be a smooth diffeomorphism manifolds. Prove that if X and Y are smooth vector fields on N, then

$$F_*[X,Y] = [F_*X,F_*Y].$$

Date: September 9, 2015.