THE ORIENTATION COVERING

INTRODUCTION TO MANIFOLDS

Suppose *M* is a connected non-orientable smooth manifold with atlas $\mathcal{A} = \{(U_{\alpha}, \phi_{\alpha} = (x_{\alpha}^{1}, \dots, x_{\alpha}^{n}))\}$. Consider the set

$$\widetilde{M} := \bigsqcup_{p \in M} \{ \text{orientations of } T_p M \},\$$

and let $\pi: \widetilde{M} \to M$ be the projection $[\omega_p] \mapsto p$. Here are some problems to help you understand the orientation covering M.

Problem 1. For every α , let

$$U_{\alpha}^{+} = \{\phi_{\alpha}^{*}[dx_{\alpha}^{1} \wedge \ldots \wedge dx^{n}]_{p} : p \in U_{\alpha}\}$$

and let

$$U_{\alpha}^{-} = \{\phi_{\alpha}^{*}[-dx_{\alpha}^{1} \wedge \ldots \wedge dx^{n}]_{p} : p \in U_{\alpha}\}.$$

For any α , let $\bar{\phi}_{\alpha} := (-x_{\alpha}^1, x_{\alpha}^2, \dots, x_{\alpha}^n)$ be the opposite orientation chart to ϕ_{α} . Show that the collection

$$\mathcal{A} := \{ (U_{\alpha}^+, \phi_{\alpha}^+ := \phi_{\alpha} \circ \pi) \} \cup \{ (U_{\alpha}^-, \phi_{\alpha}^- := \bar{\phi}_{\alpha} \circ \pi) \}$$

gives \widetilde{M} the structure of a smooth manifold.

Problem 2. Show that \widetilde{A} is an *oriented* atlas on \widetilde{M} (i.e., whenever two sets U_{α}^{\pm} and U_{β}^{\pm} intersect, the transition map $\phi_{\beta}^{\pm} \circ (\phi_{\alpha}^{\pm})^{-1}$ is orientation preserving).

Problem 3. Show that the manifold \widetilde{M} is connected.

Problem 4. Describe the oriented atlas $\widetilde{\mathcal{A}}$ on \widetilde{M} in the special case where M is a Möbius strip and \mathcal{A} consists of two charts on M.

Date: November 12, 2015.