PROBLEM SET 1

INTRODUCTION TO MANIFOLDS

Theorem 1 (Taylor's Theorem with Remainder). Let $U \subset \mathbb{R}^n$ be an open subset that is starshaped with respect to a point $p = (p^1, \ldots, p^n) \in U$. Suppose $f : U \to \mathbb{R}$ is a C^{∞} function on U. Let k be any positive integer. We then have

$$f(x) = f(p) + \sum_{i=1}^{n} (x^{i} - p^{i}) \frac{\partial f}{\partial x^{i}}(p) + \dots + \frac{1}{k!} \sum_{i_{1},\dots,i_{k}} (x^{i_{1}} - p^{i_{1}}) \cdots (x^{i_{k}} - p^{i_{k}}) \frac{\partial^{k} f}{\partial x^{i_{1}} \cdots \partial x^{i_{k}}}(p) + \frac{1}{k!} \sum_{i_{1},\dots,i_{k+1}} (x^{i_{1}} - p^{i_{1}}) \cdots (x^{i_{k+1}} - p^{i_{k+1}}) \int_{0}^{1} (1 - t)^{k} \frac{\partial^{k+1} f}{\partial x^{i_{1}} \cdots \partial x^{i_{k+1}}}(p + t(x - p)) dt.$$

Problem 1. Prove Theorem 1 for k = 2. It may help to define the path $\gamma(t) := p + t(x - p)$ with $0 \le t \le 1$, and to consider $\frac{d}{dt} f(\gamma(t))$, as in the proof of the other formulation of Taylor's theorem in the textbook.

Problem 2. Prove that the following function is C^{∞} at 0 but not real-analytic at 0:

$$f(x) = \begin{cases} e^{-1/x} & \text{if } x > 0, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

Problem 3. Prove that the set of all point derivations of $C_p^{\infty}(\mathbb{R}^n)$ forms a vector space.

Problem 4. Let A be an algebra over a field K. If D_1 and D_2 are derivations of A, show that $D_1 \circ D_2$ is not necessarily a derivation of A, but that $D_1 \circ D_2 - D_2 \circ D_1$ is always a derivation of A.

Date: August 01, 2016.