PROBLEM SET 4

INTRODUCTION TO MANIFOLDS

Problem 1. Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. For any $p \in \mathbb{R}^n$ there is a canonical identification $T_p(\mathbb{R}^n) \to \mathbb{R}^n$ given by

$$\sum a^i \frac{\partial}{\partial x^i} \bigg|_p \mapsto \langle a^1, \dots a^n \rangle.$$

Show that the differential $L_{*,p}: T_p(\mathbb{R}^n) \to T_{L(p)}(\mathbb{R}^m)$ is exactly the map L under the above identification.

Problem 2. Given smooth manifolds M and N, let $\pi_1 : M \times N \to M$ and $\pi_2 : M \times N \to N$ be the two projections. Prove that for any $(p,q) \in M \times N$,

$$\pi_{1*} \oplus \pi_{2*} : T_{(p,q)}(M \times N) \to T_p M \oplus T_q N$$

is an isomorphism.

Problem 3. Let G be a Lie group with multiplication map $\mu : G \times G \to G$, inverse map $\iota : G \to G$, and identity e.

- (a) Show that $\mu_{*,(e,e)}(X,Y) = X + Y$ for any $(X,Y) \in T_e G \oplus T_e G \cong T_{(e,e)}(G \times G)$.
- (b) Show that $\iota_{*,e}(X) = -X$ for any $X \in T_eG$.

Problem 4. Let M be a smooth manifold. A function $f: M \to \mathbb{R}$ is said to be a *local maximum* if there is a neighborhood U of p such that $f(p) \ge f(q)$ for all $q \in U$.

- (a) Let I be an open interval in \mathbb{R} . Prove that if a differentiable function $f: I \to \mathbb{R}$ has a local maximum at $p \in I$, then f'(p) = 0.
- (b) Using (a), prove that a local maximum of a smooth function $f: M \to \mathbb{R}$ is a critical point of f.

Problem 5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a smooth function. Prove that its graph $\Gamma(f) := \{(x, y, f(x, y)) \in \mathbb{R}^3\}$ is a regular submanifold of \mathbb{R}^3 .

Date: August 28, 2016.