PROBLEM SET 8

INTRODUCTION TO MANIFOLDS

Problem 1 (Problem (7-9) of Lee). Let G be a Lie group, and let G_0 denote the connected component of the identity.

- (a) Show that G_0 is an embedded Lie subgroup of G, and that each connected component of G is diffeomorphic to G_0 .
- (b) If H is any connected open subgroup of G, show that $H = G_0$.

Problem 2 (Problem (7-13) of Lee). Prove that $SO(3, \mathbb{R})$ is Lie isomorphic to $SU(2, \mathbb{C})/\{\pm I\}$ and diffeomorphic to $\mathbb{R}P^3$ (you can use the strategy outlined in Lee).

Problem 3. Let G be a Lie group of dimension n with Lie algebra \mathfrak{g} . For each $g \in G$, let $c_g := l_g \circ r_{g^{-1}} : G \to G$ be the corresponding conjugation map. Note that the differential at the identity $c_{g*} : \mathfrak{g} \to \mathfrak{g}$ is a linear isomorphism, and hence $c_{g*} \in GL(\mathfrak{g})$. Show that $Ad : G \to GL(\mathfrak{g})$ defined by $Ad(g) = c_{g*}$ is a homomorphism of Lie groups; i.e. that it is an abstract group homomorphism and a smooth map between manifolds.

- **Problem 4.** (a) Let S be a regular submanifold of codimension k in a smooth manifold M of dimension n. Let $(U, \phi) = (U, f^1, \ldots, f^n)$ be local coordinates about a point $p \in S$ such that $S \cap U$ is defined by the vanishing of f^1, \ldots, f^k . Show that $T_p S = \bigcap_{i=1}^k \ker(df^i)$.
- (b) Note that a vector field X on M restricts to a vector field on a submanifold $S \subset M$ if $X_p \in T_p S$ for any $p \in S$. Construct a vector field on \mathbb{R}^{2n} that restricts to a nowhere-vanishing vector field on the unit sphere $S^{2n-1} \subset \mathbb{R}^{2n}$ (you can use part (a) to show that it does indeed restrict to S^{2n-1}).

Problem 5. Using the fact that the pullback of a smooth k-form is a smooth k-form, prove that if $\pi : \tilde{M} \to M$ is a surjective submersion, then the pullback map $\pi^* : \Omega^*(M) \to \Omega^*(\tilde{M})$ is an injective algebra homomorphism.

Date: October 20, 2016.