PROBLEM SET 6

TOPICS IN MANIFOLDS, SPRING 2016

Problem 1. Consider the following five tessellations: the square and triangle tessellations of \mathbb{E}^2 ; the icosahedral, octahedral, and tetrahedral tessellations of \mathbb{S}^2 . For each of these tessellations, let Γ^+ be its group of orientation preserving symmetries:

- (a) Draw a fundamental region for Γ^+ .
- (b) Draw the Caley graph of Γ^+ .
- (c) Give a presentation for the group Γ^+ .
- (See problems 7.1.1 7.1.4 in Stillwell).

Problem 2. Find a presentation of the orientation preserving subgroup of the group generated by reflections in the sides of a (p, q, r) triangle. (See problem 7.3.1 in Stillwell).

- **Problem 3.** (a) Show that reflections in the sides of the $(2,3,\infty)$ triangle with vertices $i,\omega :=$ $\frac{1}{2} + \frac{\sqrt{3}}{2}i, \infty$ induce the side-pairing transformations $z \mapsto 1 + z$ and $z \mapsto -\frac{1}{z}$ in its double. (b) Verify that the group Γ generated by these transformations has the free group F_2 as a subgroup.
- What is the index of F_2 in Γ ?
- (c) Show that the group Γ has a presentation

$$\langle g, h | g^2 = h^3 = 1 \rangle$$

(See problem 7.3.6 and 7.3.7 in Stillwell).

Problem 4. Show that 336 is the correct number of (2,3,7) triangles to tessellate a hyperbolic surface of genus 3. (See problem 7.3.4 in Stillwell).

Problem 5. Show that a hyperbolic surface of genus 2 can be tessellated symmetrically by 96 (2,3,8) triangles. (See problem 7.3.5 in Stillwell).