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Abstract

Just like the distance in Euclidean space, we can assign to a manifold a no-
tion of distance. Two manifolds with notions of distances can be topologically
homoemorphic, but geometrically very different. The question then arises: are
there any “standard” or “building block” manifolds such that any manifold is
either a quotient of these manifolds or somehow “made up” of such quotients?
If so, how do we define such standard manifolds, and how do we discover how
many of them there are?

In this project, we ask, and partially answer, these questions in three di-
mensions. We go over the material necessary for understanding the proof of
the existence and sufficiency of Thurston’s eight three-dimensional geometries,
study a part of the proof, and look at some examples of manifolds modeled on
these geometries. On the way we try to throw light on some of the basic ideas
of differential and Riemannian geometry.

Done as part of the course Low Dimensional Geometry and Topology, under
the supervision of Dr Vijay Ravikumar. The main sources used are [7] and [6].
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Chapter 1

Preliminaries

In this chapter we provide some basic definitions and prove some foundational
results which will be needed later on.

1.1 Basics

Definition 1.1. If G is a group acting on a manifold X via diffeomorphisms,
then a manifold M is called a (G, X)-manifold if

1. there is an open cover {Uα} of M and a family {φα : Uα → Vα} of
diffeomorphisms onto open sets Vα ⊂ X, and

2. if Uα ∩ Uβ 6= φ, then there exists a g ∈ G such that g · x = φα ◦ φ−1β (x)
for all x ∈ Vα ∩ Vβ , which is to say, each transition map is given by the
restriction of an element of G.

Example 1.2. A Euclidean manifold is a (G,X)-manifold with X = Rn and
G a subgroup of Isom(Rn), the group of isometries of Rn. Similar definitions
hold for elliptic (X = Sn) and hyperbolic (X = Hn) manifolds.

Definition 1.3. A Riemannian metric on a manifoldM is a family of positive
definite inner products

gp : TpM × TpM → R, p ∈M

such that, for all smooth vector fields X,Y on M , the function p 7→ gp(Xp, Yp) is
smooth. Through integration, this inner product allows one to define lengths of
curves on a manifold and hence endows it with a distance function. The manifold
thus obtained is a metric space and is called a Riemannian manifold.

Example 1.4. The usual inner product on Rn is a Riemannian metric which
gives rise to a distance function known to us as the Euclidean metric.

The following result will be useful later.
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Proposition 1.5. If f : M → N is an immersion and N has a Riemannian
metric, then that metric can be pulled back to endow M with a Riemannian
metric.

Proof. Suppose µ is the metric on N . Then we define a symmetric bilinear form
f∗µ on M by

(f∗µ)(v, w) = µ(f∗(v), f∗(w)).

This is, in general, not positive definite. But if f is an immersion, f∗ has trivial
kernel, so it is positive-definite, and f∗µ is indeed a metric on M .

We now give an informal idea of the concept of curvature. First, we define
the curvature of a circle as the inverse of its radius, and that of a line as zero.
Then, given a curve on a surface and a point on the curve, there is a unique line
or circle on the surface which most closely approximates the curve near that
point, namely the osculating circle. The curvature of the curve at that point is
defined to be the curvature of that line or circle.
Finally, at any point on a surface, there is a vector normal to the surface (we
assume our surface is embedded in some ambient space with an inner prod-
uct), and various planes containing that vector. The intersection of one such
plane with the surface forms a curve, whose curvature is called a normal curva-
ture. The maximum and minimum normal curvatures at a point are called the
principal curvatures, denoted κ1, κ2, at that point. We are now ready for

Definition 1.6. The Gaussian curvature of a surface at a point is κ1κ2, the
product of the principal curvatures at that point.

It is clear from the definition that the Gaussian curvature is an invariant of
the metric. In fact, if the metric is multiplied by k, the curvature gets multiplied
by 1/k2.

Definition 1.7. The sectional curvature of a Riemannian manifold, defined
with respect to the tangent plane at a point, is the Gaussian curvature of the
surface which is tangent to that plane. This definition depends on the tangent
plane chosen.
We say that a Riemannian manifold has constant sectional curvature if the
curvature is independent not only of the choice of tangent plane, but also of the
choice of the point we choose to compute the curvature at. In this case we have

Theorem 1.8. The only complete, simply connected Riemannian n-manifolds
with constant sectional curvature are Rn, Sn and Hn.

A proof of this theorem can be found in [2].

1.2 Foliations

A foliation is a way of splitting up a manifold into lower-dimensional “slices”.
We make this precise in
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Definition 1.9. A p-dimensional foliation F of an n-dimensional manifold M
is a covering {Ui} of M along with diffeomorphisms φi : Ui → Rn such that the
transition functions φij take the form

φij(x, y) = (φ1ij(x), φ2ij(x, y)),

where x denotes the first n− p coordinates and y the last p coordinates, which
is to say that φ1ij is a map from Rn−p to itself and φ2ij is a map from Rn to Rp.

In each chart Ui, the “p-planes” corresponding to the p-planes {(x, y) : x =
a} (for various fixed constants a) are p-dimensional immersed submanifolds of
M . These piece together globally (that is, over all charts) to form maximal
connected injectively immersed submanifolds which are called the leaves of F .

Another way of thinking of a foliation is as a collection of pairwise disjoint
p-dimensional connected immersed submanifolds that cover M , so that each
x ∈M has a neighborhood U homeomorphic to Rn to which each leaf is either
disjoint, or intersects in subspaces which map to the p-planes of Rn described
above.

Example 1.10. A trivial example of a foliation is of Rn by the affine subspaces
Rp. Thus the lines (planes) x = a, where a varies over R, foliate R2 (R3).

Example 1.11. The cylinder S1×R, is foliated by the circles transverse to the
lines {x} × R. This is a 1-dimensional foliation and each circle is a leaf. The
lines {x} × R are themselves the leaves of another 1-dimensional foliation.

Example 1.12. The above example is in fact an instance of a general fact: a
foliation on X descends to any (G,X)-manifold as long as the elements of G
take leaves to leaves. So the horizontal lines in the plane descend to a foliation
of the torus by the “horizontal” circles (Figure 1.2), the vertical lines descend
to “vertical” circles, and lines with irrational slopes are dense in the torus. All
three are foliations.

Example 1.13. Any nowhere vanishing vector field has an associated 1-dimensional
foliation, the leaves being the flow lines.

Example 1.14. This is a non-example. Concentric circles centered at the origin
do not form a foliation of the plane, for the simple reason that, though each is
a connected immersed submanifold, the origin does not lie on any such circle,
so they don’t cover the plane. If we deem the origin to be a leaf by itself, then
the foliation wouldn’t have a consistent dimension.

1.3 Bundles

Fiber bundles are generalizations of the concepts of vector and tangent bundles
that we’re familiar with. They look locally like product spaces, up to adjust-
ments by group actions. More formally, we have
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Figure 1.1: The torus foliated by “horizontal” circles

Definition 1.15. A fiber bundle (E,B,G,X, π) (also called a fiber bundle
with structure group G and fiber X) consists of the following:

• A total space E

• A base space B

• A map π : E → B, called the bundle projection

• A topological group G with a left action on the space X

• A local trivialization, that is, a covering of B by open sets Ui with home-
omorphisms φi : π−1(Ui) → Ui × X such that the following diagram
commutes:

π−1(Ui) Ui ×X

Ui

φi

π

(u,x) 7→u

Moreover, we require that the transition maps

ψij = φi ◦ φ−1j : (Ui ∩ Uj)×X → (Ui ∩ Uj)×X

are of the form
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ψij(u, x) = (u, gij(u) · x),

where the maps gij : Ui ∩ Uj → G are continuous, and subject to the
cocycle condition: ψijψjk = ψik whenever this composition is defined.

A few examples will serve to illuminate and clarify this definition:

Example 1.16. The Möbius strip is a (Z2,R)-bundle over S1, which is to say
that B = S1, G = Z2, X = R, E is the strip itself, and π is the usual projection
from the strip to the circle. To see this, fix a point of the base space and fix
an orientation of the fiber above it. Moving once along the circle and returning
to our fixed point, we see that the orientation of the fiber is reversed. So we
can cover the circle with two open sets, each homeomorphic to an interval, such
that the fiber above each is homeomorphic to the product of an interval and R,
and one of the intersections of these open sets has all points having the same
orientations of their fibers, while the other intersection sees the fibers over a
given point having one orientation in the first open set, and another in the
second open set, thus requiring an orientation-reversing action. In other words,
Z2 acts on the fibers.

Example 1.17. As a contrast with the previous example, the cylinder is a fiber
bundle with base and fiber equal to those of the Möbius strip, but the group
being the trivial group.

Example 1.18. A generalization of the previous example is the product bun-
dle or trivial bundle, where E is of the form B ×X, and G is just the trivial
group.

Example 1.19. As mentioned earlier, vector bundles are special cases of fiber
bundles. A (G,X)-bundle is a vector bundle if X is a vector space and G =
GL(X), its group of linear automorphisms. A futher special case of this is ob-
tained when X = Rn, the fiber above a point being identified with the tangent
space at that point and G being identified with the derivatives of diffeomor-
phisms between open sets of B. This is of course the tangent bundle.

Example 1.20. On a Riemannian manifoldM , the subset of the tangent bundle
TM consisting of tangent vectors of unit length itself forms a bundle called the
unit tangent bundle over M , denoted UTM .

Example 1.21. Fiber bundles form an important class of foliations. Given a
fiber bundle (E,BG,X, π), where B is n-dimensional and Xm-dimensional, E
is an (m+ n)-dimensional manifold with a foliation whose leaves are the fibers.

Example 1.22. A rather handy class of bundles is obtained via the following
construction: suppose M is a smooth manifold and φ : M → M a diffeomor-
phism. Then the mapping torus Mφ is obtained from the cylinder M × [0, 1]
by identifying the two ends M × {0} and M × {1} via φ. Then Mφ is an M -
bundle over the circle with the action of the group generated by φ. The cylinder
and Möbius strip are examples of this, with M = R and φ the identity and a
reflection respectively, as are the torus and the Klein bottle, where M = S1 and
φ the identity and the antipodal map respectively.
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We now define a very special kind of fiber bundle:

Definition 1.23. A principal fiber bundle is a fiber bundle where the fiber
is the structure group itself, that is, X = G, and the action is the usual left-
multiplication.
In this case, however, we also get a right action of G on E, locally given, for an
open set U ⊂ B, by

(x, h) 7→ (x, h · g), x ∈ U ; g, h ∈ G.

This local action can be glued together to give a global action of G on E since
the right action commutes with the left action of G on G. This right action is
thus defined naturally on a principal bundle. Note that this is not the same as
the left-action: that is an action on the fibers (so, for example, nearby points
on different fibers need not map to nearby points under left translation), while
the right action is an action on the whole space.

Since in what follows we will have occasion to consider only such situations
where spaces are smooth manifolds, maps are smooth and G is a Lie group
acting via diffeomorphisms, we now specialize to such a situation.

Definition 1.24. Let (E,B,G, π) be a principal fiber bundle. For p ∈ E, let
Vp be the subspace of TpE consisting of vectors tangent to the fiber through p.
A connection Γ is an assignment of a subspace Hp of TpE to each p ∈ E such
that

1. Hp varies smoothly with p

2. TpE = Hp

⊕
Vp

3. For any g ∈ G, (Rg)∗(Hp) = Hp·g (where Rg denotes the right action of
G).

The idea is this: assign to each point of E a vector space which is a comple-
ment of the tangent space to the fiber such that this assignment is smooth and
invariant under the action of G. Thus Γ gives a horizontal subbundle of TE,
the tangent bundle of E.
The projection π : E → B induces a linear map π∗ : TpE → Tπ(p)B for each
p ∈ E which restricts to an isomorphism on Hp. Then it is easy to show that,
corresponding to each vector field X on E, there exists a unique vector field
X∗ on E that corresponds to X under this isomorphism. It follows that X∗ is
horizontal and hence invariant under the right G-action.

Definition 1.25. A connection form ω for a connection Γ assigns, to each
p ∈ E, the map ωp : TpE → R which takes a tangent vector at p to its inner
product with a tangent vector Xp in Vp. The choice of such a vector Xp can be
made smoothly over E, in such a way that ω is a smooth 1-form and Hp = ker
ωp for all p.

Definition 1.26. The curvature of a connection ω is defined to be dω.
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Chapter 2

Model Geometries

We now turn to the definition of a model geometry, and provide some back-
ground as to why it is defined the way it is.

2.1 What is a model geometry?

Some manifolds, such as the torus and cylinder, have metrics inherited from the
Euclidean space they are quotients of. Some, such as the sphere and projective
plane, have no metric compatible with the Euclidean metric, but the projective
plane does have a metric inherited from the sphere. This gives rise to the
question: can all Riemannian manifolds (and their metrics) be obtained as
quotients of some reference manifold(s)? If so, what are the properties these
reference manifolds must possess? As a step towards answering these questions,
we make

Definition 2.1. A model geometry (G,X) is a manifold X together with a
Lie group G of diffeomorphisms of X such that

1. X is connected and simply connected;

2. G acts transitively on X with compact point stabilizers;

3. G is not contained in any larger group of diffeomorphisms of X with
compact point stabilizers; and

4. there exists at least one compact (G,X)-manifold.

The standard examples of model geometries are X = Rn, Sn or Hn with its
usual metric, and G its group of isometries.

Since there is no loss of generality in working with connected components
individually, we may assume that X itself is connected. Any (G,X)-manifold
is a (G, X̃)-manifold as well, where X̃ is any covering space of X, so it makes
sense to consider the general case where X is its own universal cover, that is,
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simply connected. This explains the first requirement.
Similarly, since a (G,X)-manifold satisfying the first two requirements would be
a (G′, X)-manifold for G ⊂ G′, we are better off studying the most general case:
the one where G is the largest such group. This explains the third requirement.
The fourth requirement is just to ensure we get some “interesting” manifolds
based on a given geometry. After all, our aim is to classify the manifolds we’re
already familiar with.
Justifying the second requirement is the purpose of the rest of this chapter. The
next section is devoted to developing some ideas we will need later.

2.2 Holonomy and the developing map

Given a group G acting via analytic diffeomorphisms on a space X, and a
(G,X)−manifold M , we construct a map called the developing map, which,
under certain nice conditions, gives us a subgroup Γ of G for which M is the
quotient space X/Γ.

For the rest of the discussion, we work with a fixed basepoint m0 of M , and
a (G,X)−chart (U0, φ0) whose domain contains m0. Let π : M̃ → M be the
universal cover of M . Then we can think of M̃ as the space of all homotopy
classes of paths starting at m0 and ending at some point of M .

Now suppose [σ] ∈ M̃ , that is, σ is a path from m0 to the point π([σ]) in
M . Suppose the sets U0, U1, . . . , Uk cover this path, with π([σ]) ∈ Uk. It can be
arranged that Ui∩Uj 6= φ if and only if j and i are consecutive. On U0∩U1, the
transition map φ0 ◦ φ−11 is given by some element g1 ∈ G. Since G acts via real
analytic diffeomorphisms, this g1 is unique. Similarly, on U1∩U2, the transition
map φ1 ◦ φ−12 is given by some element g2 ∈ G and so on till we get elements
g1, g2, · · · gk ∈ G. So we get a well-defined smooth map φ on U = U0 ∪ · · · ∪Uk,
called the analytic continuation of φ0 along σ:

φ : U0 ∪ · · · ∪ Uk → X

m 7→


φ0(m), m ∈ U0

g1 · φ1(m), m ∈ U1

...

g1 · g2 · · · gk · φk(m), m ∈ Uk

Since σ is a path in M and φ defines a smooth map from M to X, the image
of σ in X is a path in X. But we have something stronger, namely that, the
neighborhood U of σ maps to a neighborhood V of φ(σ) in X. If we have a path
homotopy between σ and some path σ′ which lies entirely inside U , then φ will
take σ′ and the homotopy to V and therefore φ(σ) and φ(σ′) will be homotopic in
X as well. In particular, they will also have the same endpoint. This argument
can be extended to all paths homotopic to σ, so the map g1 ·g2 · · · gk ·φk does not
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depend on the choice of a path in [σ], and we can define φ
[σ]
0 = g1 · g2 · · · gk · φk

unambiguously.

We now show that the map φ
[σ]
0 does not depend on the choices U1, . . . Uk made

on the way. Suppose (U ′1, φ
′
1), . . . , (U ′k, φ

′
k) is another choice of charts and the

resulting map is φ′. Then both φ and φ′ agree on U0. Now suppose they agree up
to some point m of σ. The open sets Ui and U ′j which contain m have nonempty

intersection, and (Ui, φ|Ui) and (U ′j , φ
′|U ′

j
) are charts, so that φ′◦φ−1 is given by

some g ∈ G. But φ and φ′ agree on some neighborhood of the part of σ before
m, so φ′ ◦ φ−1 must coincide with the identity of G in some neighborhood of
φ(m) = φ′(m). Since G acts by real analytic diffeomorphisms, g is the identity
and we have φ = φ′ in some neighborhood of m. Using connectedness of σ, it

can easily be shown that they agree on the whole path, and it follows that φ
[σ]
0

does not depend on the choice of charts.

The upshot of the preceding discussion is that, corresponding to each homo-
topy class of paths [σ] in M , we get a unique point x[σ] of X (that is, the image

of the endpoint of σ under φ
[σ]
0 ), which varies smoothly with [σ]. The definition

of the developing map D : M → X then follows: it is the map that takes
[σ] to x[σ] of X. It is clear that this is a smooth map, and also that, in a
neighborhood of [σ], we have a commutative diagram

M̃ M

X

π

D

φ
[σ]
0

Given a smooth map f : N → M of manifolds, it is easy to see that a
(G,X)−structure on M can be pulled back to one on N by pulling back the
charts on M via f . So, via π : M̃ → M , M̃ acquires a (G,X)− structure, and
D is a local (G,X)− diffeomorphism.

Now suppose [σ] ∈ π1(M). Then φ0 and φ
[σ]
0 have nonempty intersection (the

basepoint m0 must lie in both), hence φ
[σ]
0 = g[σ] ·φ0 for some g[σ] ∈ G. This g[σ]

is defined to be the holonomy of [σ]. The map [σ] 7→ g[σ] is a homomorphism
from [σ] ∈ π1(M) into G, whose image is called the holonomy group Γ of M .

Definition 2.2. M is called a complete (G,X)−manifold if the deveoping
map D is a covering map.

If X is simply connected, we obtain that D is a diffeomorphism because a
simply connected space is homeomorphic to any cover. We can then assume
that X itself is the universal cover of M, and obtain the following result (which
is useful but we will not have much occasion to use)

Proposition 2.3. If G is a group of analytic diffeomorphisms of a simply con-
nected space X, then any complete (G,X)−manifold may be reconstructed from
its holonomy group Γ as X/Γ.
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Proof. We use the standard result from algebraic topology: any space is the
quotient of its universal cover by the group of deck transformations. If we can
show that Γ coincides with the group of deck transformations A, we would be
done. To show this, it is enough to show that Γ preserves fibers (so Γ ⊂ A),
and acts transitively on some fiber (so A ⊂ Γ).
The latter is straightforward: take the fiber of x0 itself. Any point x̃0 in the

fiber is the image of x0 under φ
[σ]
0 for some σ, and since φ

[σ]
0 = g[σ] ·φ0, we have

that x̃0 = gσ · φ0(x0), so the action of Γ on this fiber is transitive.
To answer the former, we ask ourselves: what is the fiber of a point x ∈ M?
It is the set of points in X which are endpoints of lifts of paths from x0 to x.
Suppose τ is a path from x0 to x whose lift in X is τ̃ . Suppose σ is a loop at
x0 whose lift is σ̃. Note that σ̃ need not be a loop in X. The endpoints of σ̃τ
(the lift of στ) and τ̃ are two points in the fiber of x. If we apply g[σ] to τ̃ , we
get a path τ̃ ′ starting at the endpoint of σ̃ such that σ̃τ̃ ′ is a lift of στ . Since
any path has a unique lift, the endpoints of σ̃τ and σ̃τ̃ ′ must coincide, that is,
g[σ] acts on the endpoint of τ̃ to give the endpoint of σ̃τ , which is in the same
fiber. Since τ and σ were arbitrary, it follows that Γ preserves fibers, and the
proof is complete.

2.3 Compact point stabilizers

We will use the ideas developed in the previous section to understand why we
require point stabilizers to be compact in Definition 2.1. One of the reasons is
so that X has a G-invariant Riemannian metric:

Lemma 2.4. Let G act transitively on a manifold X. Then X admits a G-
invariant Riemannian metric if and only if, for some x ∈ X, the image of Gx
in GL(TxX) has compact closure. (Gx denotes the stabilizer of x in G.)

Proof. Since a Riemannian metric is a non-degenerate symmetric bilinear form,
then for G to preserve it, Gx must map to a subgroup of O(TxX) (the orthogonal
matrices; the map here is g 7→ (Lg)∗, where Lg denotes left-multiplication by
g). Since O(TxX) is compact, the image of Gx under this map has compact
closure.

Conversely, suppose Gx has compact closure Hx under this map. Any com-
pact group can be given a finite measure, called the Haar measure, that is
invariant under left or right translations of the group. Let <,> be any positive
definite symmetric bilinear form on TxX, and define

(u, v) =
∫
Hx

< gu, gv > dg, u, v ∈ TxX

where dg is the Haar measure on Hx. Then (u, v) is an inner product on TxX
invariant under the action of Gx. Since G acts transitively, this inner product
can be propagated to TyX for any y ∈ X, and we thus get a G-invariant
Riemannian metric on X.
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Further explanation of the requirement of compact point stabilizers will need
some exposition.

Definition 2.5. A geodesic is a curve γ : [0, 1]→ M such that, for x, y close
enough in [0, 1], the shortest path joining γ(x) and γ(y) in M coincides with
γ([x, y]).

From the result on existence and uniqueness of the solution of a second-order
ordinary differential equation, we know that, given v ∈ TpM , there is a unique
geodesic γv such that γv(0) = p and γ′v(0) = v. Here γv is a map from (a, b) to
M , where a, b depend on M, v and p, and could even be ±∞.

Definition 2.6. The exponential map of γv is defined by

expp(v) = γv(1).

This map need not be defined for a given pair p, v.

Since exp varies smoothly based on p and v, it can be shown that exp is
well-defined on some open set containing 0 in TpM . It can then be shown that
(expp)∗|0 is the identity on a small neighborhood of 0, hence that, for any p ∈M ,
there is a neighborhood V of 0 in TpM and a neighborhood U of p in M such
that expp : V → U is a diffeomorphism. It follows that, given p, there exists an
ε > 0 such that if d(p, q) < ε, then there is a unique geodesic joining p and q
inside the ball B(p, ε). (We say, in this case, that B(p, ε) is ball-like and convex.
Detailed proofs of the foregoing statements may be found in [3]. We are now
ready for

Proposition 2.7. Let G be a Lie group acting transitively on X such that Gx
is compact for some (hence all) x ∈ X. Then every closed (that is, compact)
(G,X)-manifold M is complete.

Proof. By Lemma 2.4, X has a G-invariant Riemannian metric. Let M be a
closed (G,X)-manifold. Using local charts and partitions of unity, as well as
Proposition 1.5, this metric can be pulled back to give M a Riemannian metric
which is invariant under any (G,X)-map. This metric can further be pulled back
to give M̃ , the universal cover of M , a Riemannian metric. By the preceding
paragraph, we can get, around each p ∈M , an εp-neighborhood that is ball-like
and convex. By compactness of M , we can find an ε that works for all p ∈ M .
Further, since G acts transitively on X, we can assume all ε-neighborhoods in
X are ball-like and convex.

Take y ∈ M̃ . The developing map D maps B(y, ε) isometrically onto B(D(y), ε):
it is enough to show that it is an isometry and that it is injective. It is an isom-
etry because the metric on M̃ is defined as the pullback of the metric on X
under D; it is injective because, if D(y) = D(y′), then the geodesic from y to
y′ maps to a geodesic through D(y) and D(y′) in X. Since these are the same
point , and since any two points have a unique geodesic in X, we must have
y = y′.
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Suppose x ∈ X and D(y) ∈ B(x, ε/2). Since B(y, ε) is isometric to a ball
containing B(x, ε/2), it must contain a homeomorphic copy of B(x, ε/2). It
follows that B(y, ε) is a disjoint union of such homeomorphic copies, that is, D
evenly covers X. Therefore M is complete.
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Chapter 3

Thurston’s Theorem

In this chapter we state the main result and provide a partial proof. First, we
deal with the two-dimensional version.

3.1 In two dimensions

Theorem 3.1. There are exactly three two-dimensional model geometries: R2, S2

and H2.

Proof. Let (G,X) be a two-dimensional model geometry. Since we’re working
in two dimensions, there is exactly one tangent plane at each point and the
sectional curvature is the Gaussian curvature. From the definition of a model
geometry, we know that G acts transitively on X and that the metric on X is
G-invariant. By transitivity, G takes the curvature at a point to the curvature
at any other point, and since the curvature is an invariant of the metric, it must
be the same at all points. By Theorem 1.8, X can only be one of R2, S2 and
H2

So in two dimensions, things are relatively straightforward. In three dimen-
sions, however, we already see that, for example, S2 × R is a candidate for a
model geometry which is not homeomorphic to either of R3, S3 or H3. In fact,
there are eight model geometries in three dimensions, and that is the content of
the main theorem.

3.2 In three dimensions

Let (G,X) be a model three-dimensional geometry. We first embark on a dis-
cussion of the group G.

14



3.2.1 Group discussion

The whole point of having a group acting on our manifold X is that studying
the group will give us information about X itself. Accordingly, we first take a
look at the connected component of the identity of G. Call it G′.

Lemma 3.2. The action of G′ is transitive.

Proof. Recall that the stabilizer of a point x ∈ X is called Gx. We claim that
it is enough to show that, for an arbitrary x ∈ X, G′Gx = G. For then, if
y ∈ X is any other point, and g · x = y for some g ∈ G (the action of G is
transitive), then g would be of the form g′h for some g′ ∈ G′ and h ∈ Gx. This
would imply that y = g · x = g′h · x = g′ · x, that is, that there is an element
in G′ taking x to y. Since x and y were arbitrary, this would complete the proof.

So it remains to show that G′Gx = G. Since G acts transitively with sta-
bilizer Gx, G/Gx is diffeomorphic to X. G′, being the connected component
of the identity, is an open normal subgroup of G, hence G′Gx is itself an open
subgroup of G. Its image under the open map G→ G/Gx is an open set, as are
the images of its cosets in G. We thus get a collection of disjoint open sets in
G/Gx. However, this is diffeomorphic to X, which is connected. It follows that
there is actually just one such open set. That is, G′Gx = G.

Lemma 3.3. G′x is connected for any x.

Proof. G′x is the stabilizer of x in G′. Let (G′x)0 be the connected component of
the identity in G′x. Proving the lemma is equivalent to proving that G′x = (G′x)0.
By the previous lemma, the action of G′ is transitive, so we have G′/G′x ' X
for any x ∈ X. Instead of G′x, if we quotient G′ by (G′x)0, a subgroup of G′x, the
resulting map into X might not be injective, but it will still be surjective. We
therefore have a projection π : G′/(G′x)0 → X with fiber G′x/(G

′
x)0. Since (G′x)0

is the connected component of the identity, the quotient G′x/(G
′
x)0 is discrete,

and the map π is actually a covering space map. Since X is simply connected,
the fiber over each point is exactly one point, so G′x = (G′x)0.

Lemma 3.4. G′x is closed in G for any x.

Proof. Since G′ is open, so is each of its cosets (they are all diffeomorphic to G′).
Hence G′, being the complement in G of the union of these cosets, is also closed
(another way to see this is that G′ is a connected component, hence clearly
closed). Gx, being the inverse image of x under the map G→ X(g 7→ g · x), is
also closed. It follows that G′x = Gx ∩G′ is also closed.

The upshot of these lemmas is that G′x is a connected closed subgroup of
G. Since it is a closed subgroup, it is also a Lie subgroup. We have already
seen that G must map into O(3) if it is to preserve a Riemannian metric on
X. Since the connected component of the identity in O(3) is SO(3), we see
that G′x is a connected Lie subgroup of SO(3). We will use, without proof, a
well-known fact: the only possibilities for G′x are SO(3), SO(2) and the trivial
group. Accordingly, Gx is also a Lie group of the same dimension.
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3.2.2 The theorem

As we saw in the previous section, there are three possibilities for what the point
stabilizers can be. It turns out that these decide what X can be.

Theorem 3.5. There are eight three-dimensional model geometries (G,X):

(a) If the point stabilizers are three-dimensional, then X is R3, S3 or H3.

(b) If the point stabilizers are two-dimensional, then X fibers over the two-
dimensional model geometries. The connection orthogonal to the fibers has
curvature zero (in which case X is S2 × R or H2 × R) or 1 (in which case

X is nilgeometry (which fibers over R2) or S̃L2(R) (which fibers over H2)).

(c) If the point stabilizers are one-dimensional, X is solvegeometry, which fibers
over the line.

Proof. Let us assume that X has already been endowed with a G-invariant Rie-
mannian metric (a consequence of Lemma 2.4). We discuss the three possibilities
in turn.

(a) The sectional curvature at any point of a manifold is defined in terms of the
Gaussian curvatures of various 2-planes in the tangent space at the point,
that is, the curvatures of the surfaces whose tangent spaces those planes
are. To say that a manifold has constant sectional curvature is to say that,
at any given point, the sectional curvatures of any two tangent planes are
equal. Since X has a G-invariant Riemannian metric, and G acts transi-
tively on X, a single point having constant sectional curvature would be
equivalent to all points having constant sectional curvature.

If G′x = SO(3), then any tangent plane at the point x can be taken to any
other tangent plane at x. Why? Because we can think of each tangent plane
as a great circle of S2 ⊂ TxX ' R3, and the action of SO(3) on S2 is by
rotations, so any great circle can be taken to any other great circle (another
way to see this is by rotating the normal to one plane to the normal to the
other plane: this is always possible using an element of SO(3)). Since the
metric, and hence the curvature, is G-invariant, it follows that x has con-
stant sectional curvature, and hence the whole of X has constant sectional
curvature.

The only three-dimensional simply connected complete manifolds with con-
stant sectional curvature are R3, H3 and S3, hence these are the possible
geometries for this case.

(b) If G′ acts with stabilizer SO(2), then at each x ∈ X, the tangent space TxX
(which is R3) contains a one-dimensional subspace which is fixed under the
action of G′x. Then we can fix a point p ∈ X and a tangent vector Vp in
this one-dimensional subspace of TpX. Since the action of G′ is transitive,
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taking g∗(Vp) over all g ∈ G gives a G′-invariant vector field V on X (this is
well-defined since Gp fixes Vp). This is a nowhere-vanishing smooth vector
field.

Let φt be the flow of V at time t. We first prove

Lemma 3.6. φt commutes with the action of G′.

Proof. φt is the flow of V at time t. It suffices to show that, for any g ∈ G,
ψt = g ◦ φt ◦ g−1 is also a flow of V . Then by the uniqueness of flow we
would have φt = g ◦ φt ◦ g−1 and hence the lemma. We have ψt(p) =
g ◦ φt ◦ g−1(g · p) = g · φt(p). So ψ0(g · p) = g · φ0(p) = g · p. Moreover,
ψ′0(g ·p) = (g ◦φt ◦g−1)′|0(g ·p) = (g ◦φt)′|0(p) = g∗(φ0(p)) = g∗(Vp) = Vg·p.
To conclude, we have shown that ψ0(g · p) = g · p and ψ′0(g · p) = Vg·p,
which shows that ψt is a flow of V at time t, concluding our proof of the
lemma.

Since V is nowhere-vanishing and its integral curves are pairwise-disjoint,
they form a one-dimensional foliation of X. Call this foliation F . Suppose
the points x and y lie on the same leaf F of F , and suppose g ∈ G′x. Then,
since y = φt(x) for some t, we have g · y = g · φt(x) = φt(g · x) = y, so that
g ∈ G′y. It follows that G′x = G′y.

Lemma 3.7. If h ∈ G′ takes x to y in F , then h commutes with every
element of G′x = G′y.

Proof. Let HF be the group of all elements of G′ that keep F invariant (in
fact, if any h takes some point of a leaf to another point on the same leaf,
it must be in HF ). For g ∈ G′x and h ∈ HF , the map g 7→ hgh−1 is an
automorphism of SO(2) ' S1. Since there are only two automorphisms of
S1, we get a continuous map from HF to Z/2Z. If we can show that HF

is connected, then we would be done, because then hgh−1 would be the
identity for every g ∈ G′x. But G′x is connected and since HF /G

′
x ' F ,

which is connected, we have that HF itself is connected, and the proof is
complete.

Fix a time t and a point x on a leaf F . Let gt be an element of G′ that
takes φt(x) back to x. Then gt ◦ φt fixes x. Moreover, since gt and φt are
both diffeomorphisms, (gt◦φt)∗ is an automorphism of TxX. Since (φt)∗ and
(gt)∗ both leave V invariant, (gt ◦φt)∗ is the identity on the one-dimensional
subspace of TxX that is fixed by G′x. Moreover, by the preceding results, it
commutes with the elements of G′x. Elementary matrix calculations show
that such a map must be of the form1 0 0

0 e f
0 −f e

 , e, f ∈ R.
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Such a matrix can be written as1 0 0
0 e f
0 −f e

 =

1 0 0

0 e
e2+f2

f
e2+f2

0 −f
e2+f2

e
e2+f2


1 0 0

0 e2 + f2 0
0 0 e2 + f2

,

that is, a composition of a rotation with a scaling.

Lemma 3.8. gt ◦ φt can only be a rotation.

Proof. We need to show that gt ◦ φt has no scaling component. Suppose it
does. By assumption, we have a compact manifold M with the geometry
of X. Passing to its orientation cover we can assume M is orientable and
hence has a canonical volume form ω obtained from the Riemannian metric
it inherits from X.

Therefore, ((gt ◦ φt)∗ω)p = λ(p)ωgt◦φt(p), with λ representing the scaling
at p. Now ((gt ◦ φt)∗ω)p = (φ∗tω)p and ωgt◦φt(p) = ωφt(p) since G′ keeps
the volume form invariant. So we have (φ∗tω)p = λ(p)ωφt(p) for all p ∈ M .
Suppose q is another point. Then, since the action of G′ is transitive, there
is some element g ∈ G′ such that g · p = q. Then we have λ(q)ωφt(p) =
g∗(λ(q)ωφt(q)) = g∗ ◦ φ∗t (ωq) = φ∗t ◦ g∗(ωq) = φ∗t (ωp) = λ(p)ωφt(p), yielding
λ(p) = λ(q). Thus λ is constant over M and we have (φ∗tω)p = λωφt(p) for
some fixed positive real number λ.

In the current scenario, the field V preserves the volume of the compact
manifold, hence we have

Vol(M) =

∫
M

ω =

∫
M

φ∗tω = λ

∫
M

ω,

which forces λ to be 1 and hence the lemma.

Thus (gt ◦φt)∗ is an isometry on TxX. Since gt is an isometry, φt is also an
isometry. The same is true for any x and t, and therefore we have the

Proposition 3.9. The flow of V is by isometries.

We now show that the quotient of X by this foliation is itself a two-
dimensional model geometry.

Lemma 3.10. Any two leaves F1 and F2 have disjoint neighborhoods.

Proof. Fix x ∈ F1 and y ∈ F2. Let U1 and U2 be disjoint neighborhoods of
x and y. Let G1 = {h ∈ G : h · x ∈ U1}, and analogously G2 for y and U2.
Then, since the action of G′ commutes with the flow, we have that G1 · F1

and G2 · F2 are disjoint neighborhoods of F1 and F2 respectively.
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Figure 3.1: An integral curve ap-
proaching a point.

Figure 3.2: An integral curve accu-
mulating on itself.

Lemma 3.11. Any leaf F is an embedded image of S1 or R.

Proof. Suppose not. Then, since F is actually an integral curve for V for
all time, it must either approach some point p without actually passing
through it (Figure 3.1), or accumulate somewhere on itself (Figure 3.2).
In the former case, the point p is a part of some leaf F ′ 6= F , but then
F ′ and F would have no disjoint neighborhoods, contrary to the previous
lemma. In the latter case, suppose q ∈ F is the accumulation point. Then
we have hn → e for some sequence {hn} in G′. Now consider some point
p′ ∈ F “after” p (that, is, lying on the part between p and the part that
accumulates on p). Since the group action effectively moves the integral
curve “ahead”, we must have hn · p′ → p in X, contradicting the fact that
hn · p′ → e · p′ = p′.

From the above we also see that each leaf is closed. If we define Y = X/F ,
it can be seen that Y itself is a manifold (Hausdorffness follows from Lemma
3.10; the other conditions are easy to check). Recall that we defined HF

to be the subgroup of G′ that keeps F invariant. Since each leaf is closed,
and the action of HF is transitive, we see that HF itself is closed, hence a
Lie subgroup of G′. We see that the action of G′ on Y is transitive, with
stabilizer HF . In other words, Y ' G′/HF .

Being a quotient of X, Y is connected. Y is also simply connected. We see
it thus: consider a loop centered at a point HF · x ∈ Y . It has multiple
pre-images in X which are paths. Choose any one such path. The end-
points of this path lie on the leaf F of x. Since X is simply connected
and F is path-connected, this path is homotopic to a path between the two
end-points, lying entirely inside F . Thus their images, the original loop and
the identity map, are homotopic, and Y is simply connected.

Proposition 3.12. Y inherits a Riemannian metric from X, and a tran-
sitive action of G′ by isometries.
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Proof. Let π : X → Y be the quotient map. At each point p ∈ X, π∗ is
an isomorphism between the horizontal tangent space (that is, the plane
orthogonal to the vector field) and the tangent space of the image of p in Y .
Thus we can assign an inner product to Tπ(p)Y as 〈π∗(u), π∗(v)〉 = 〈u, v〉.
This is well-defined since 〈u, v〉 = 〈(φt)∗(u), (φt)∗(v)〉 for all t, φt itself being
an isometry. All properties required of this inner product to be a metric
follow from the fact that it defines a metric on X.

The action of G′ on Y is transitive because the action of G′ on X was
transitive to begin with. That G′ preserves the metric follows from the fact
that the metric itself is inherited from X.

Thus we have shown that (G′, Y ) is itself a two-dimensional model geometry
and hence

Proposition 3.13. Y is either R2, H2 or S2.

We also note that X is a principal fiber bundle over Y , with fiber and struc-
ture group equal to either S1 or R: since the fibers of the bundle are the
leaves of the foliation, clearly the fiber is either S1 or R. Moreover, since the
transition maps on the intersection of two neighborhoods of leaves can only
be given by translations. For example, if it is R, given an open set U in Y ,
we can find an open set U ′ in X which is of the form φt(A) for some ”local
section” A of X with local trivialization map given by ψ(φt(a)) = ψ(a) + t.
If φt(a) too happens to be φs(b) for some open set V ′ corresponding to an
open set V in Y , then the transition map from ψ(U) to ψ(V ) would involve
a translation by s− t.

It is clear that the plane field τ orthogonal to the foliation F is a connection.
By a suitable rescaling, we can assume the curvature of this connection is
-1, 0 or 1. Further, by choosing appropriate orientations for the base and
the fiber, we can tackle the non-zero cases together, and we thus have two
possibilities for the curvature: 0 and 1.

If the curvature is zero, we get a horizontal foliation transverse to the fibers.
We thus get local homeomorphisms between the intersections of the leaves
with open sets in X and open sets in Y . Considering the topology on a
given leaf as its own topology and not the one inherited from X, we see
that each leaf is a covering space of Y . Since Y is simply connected, each
leaf is itself Y , and we thus get a global section of X.

It can be shown that a principal bundle is trivial if it admits a global section
(for example, sending each element of the section to the identity element
of the corresponding fiber in the trivial bundle gives a bundle isomorphism).
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Thus we conclude that if the curvature is zero, the bundle is trivial. Passing
to the universal cover, there are three possible cases: H2 × R, S2 × R and
R3, two of which are new.

If the curvature is non-zero, we get what is called a contact structure (a
detailed discussion of this and the next part of the proof is beyond the
scope of our project; the reader is advised to refer to [7] to see the full
proof). If Y has non-zero curvature, X can be taken as the universal cover
of the unit tangent bundle of Y . So if Y = S2, we get S3 (which is not a

new geometry), and if Y = H2, we get S̃L2(R). If Y has zero curvature, we
get nilgeometry.

(c) If G′ acts with trivial stabilizer, then we have G′/G′x ' X, so X is itself a Lie
group. So the task becomes one of finding connected and simply connected
three-dimensional Lie groups for which there is at least one subgroup H
such that G/H is compact, and which are not any of the seven geometries
obtained so far. It turns out that there is only one such Lie group, and the
resulting geometry is called solvegeometry.
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Chapter 4

The Eight Geometries

This chapter is dedicated to a discussion of some of the eight geometries. Since
we are somewhat familiar with the Euclidean, hyperbolic and elliptic geometries,
we will refrain from discussing R3, S3 and H3, and instead concentrate on the
others. We will need the following, a proof of which can be found in [4]:

Theorem 4.1. Let Γ be a group acting on a manifold X. The quotient space
X/Γ is a manifold if and only if Γ acts freely and properly discontinuously.

4.1 S2 × R

In this case G = Isom(S2) × Isom(R) = O(3) ×
{(

a b
0 1

)
: a ∈ Z/2Z, b ∈ R

}
,

the former being composed of rotations and reflections and the latter of trans-
lations and reflections. It turns out that there are only seven manifolds without
boundary modeled on this geometry. We will identify all six non-trivial ones
(S2 × R is the trivial one) of them as X/Γ for some Γ ⊂ G in accordance with
Theorem 4.1. First suppose Γ is generated by some (α, β), where α ∈ Isom(S2)
and β ∈ Isom(R) (note that at least one of α and β must be fixed-point free,
leaving us with very few options).

1. If α is the identity and β a translation, then X/Γ ' S2 × S1. Moreover,
we have a map π : (S2 ×R)/Γ→ S1 given by π([(x, y)]) = [y], and a map
φ : (S2 ×R)/Γ→ S1 × S2 given by φ([(x, y)]) = ([y], [x]) = ([y], x), which
makes S2 × S1 a trivial bundle over S1.

2. If α is the antipodal map and β a translation, then an equivalence class
of S2 × R looks like {(x, y), (−x, y + a), (x, y + 2a), . . . }, so the resulting
quotient is still S2×S1, but it is a non-trivial bundle over S1, so we denote
it S2×̃S1.

3. If α is the antipodal map and β the identity, then (S2 × R)/Γ ' RP 2 ×
R, which is a trivial line bundle over the projective plane. This case is
analogous to the first one.
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4. If α is the antipodal map and β a reflection, then we get, analogously
to the second case, a non-trivial line bundle over the projective plane,
denoted RP 2×̃R.

5. Now suppose Γ is generated by two elements: (α1, β1) and (α2, β2). If
α1 is the antipodal map, α2 the identity, β1 the identity and β2 a trans-
lation, then (α1, β1) and (α2, β2) commute, so the identifications in both
components happen independently, and we get RP 2×S1, the trivial circle
bundle over the projective plane.

6. If α1 and α2 are both the antipodal map and β1 and β2 distinct reflec-
tions, then one easily checks that the manifold obtained is RP 3#RP 3, the
connected sum of two projective spaces.

4.2 H2 × R
Since there are infinitely many manifolds modeled on H2, there are infinitely
many manifolds with the geometry of H2 ×R (Sg × S1 or Sg ×R, for example,
where Sg is the orientable surface of genus g).

In general, the mapping torus Mφ, where M is a hyperbolic surface and φ
an isometry of M , is a manifold with this geometry.

H2 × R is foliated by the lines {x} × R. The isometries of R leave these lines
invariant. The isometries of H2 don’t leave the lines invariant, but they map
these lines to other such lines. It follows that the elements of Isom(H2 × R) =
Isom(H2) × Isom(R) keep the foliation invariant, and if we quotient H2 × R by
any subgroup of this group, the resulting space will still be foliated, by either
lines or circles (depending on whether an R-translation was involved). This
leads us to

Definition 4.2. A space foliated by circles is called a Seifert fibered space.

(This is not a rigorous definition, but will serve our purposes. For the full
definition, please see [6]).

Now suppose Γ is a discrete, fixed-point free group of isometries of H2 × R
giving us a manifold with this geometry (we do not consider the non-discrete
case here). Then so is Γ ∩ Isom(R), which therefore must be {1} or Z (Z is the
only nontrivial discrete closed subgroup of R). If it is {1}, we get a line bundle.
If it is Z, we get a Seifert fibered space.

4.3 S̃L2(R)
As we saw in the proof of Theorem 3.5, this geometry is actually the univer-
sal cover of UH2, the unit tangent bundle of H2. One way to see this is that
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UH2 ' PSL2(R), the orientation-preserving isometries of the hyperbolic plane.
This is because PSL2(R) acts on UH2 transitively (the action on H2 is clearly
transitive, while a rotation can take any unit tangent vector at a point to any
other unit vector at that point), and since rotations are the only orientation-
preserving isometries of H2 with fixed points, the corresponding actions on UH2

have no fixed points (a nontrivial rotation cannot fix all unit tangent vectors).

As is evident from the preceding discussion or from the proof of Theorem 3.5, the
unit tangent bundle of any hyperbolic surface (a circle bundle, hence a Seifert
fibered space)is an example of a compact manifold with this geometry.

4.4 Nilgeometry

This geometry is isometric to what is known as the Heisenberg group:
1 x y

0 1 z
0 0 1

 : x, y, z ∈ R


This is a nilpotent group (hence the name nilgeometry), and has the structure
of a line bundle over the plane. An example of a manifold with this geometry
is what is known as the integral Heisenberg group:

1 x y
0 1 z
0 0 1

 : x, y, z ∈ R/Z

,

which is homeomrphic to the 3-torus, but not isometric to it. For further clari-
fication and examples, we need a slight digression.

Definition 4.3. An Anosov diffeomorphism is an automorphism of the 2-
torus that splits the tangent bundle into two subbundles, one expanding and
one contracting with respect to some Riemannian metric. Equivalently, it is an
automorphism given by an element of SL2(Z) whose eigenvalues are real and
distinct.

(Again, this is not a fully rigorous definition. One may be found in [1].)

Definition 4.4. A torus bundle is a mapping torus Mφ with M the 2-torus
and φ a diffeomorphism of the 2-torus.

A proof of the following may be found in [ref].

Proposition 4.5. Geometrically, there are three types of torus bundles Mφ:

(1) If φ has finite order, then Mφ has the geometry of R3.

(2) If φ is a power of a Dehn twist, then Mφ is modeled on nilgeometry.

(3) If φ is an Anosov diffeomorphism, then Mφ is modeled on solvegeometry.
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4.5 Solvegeometry

This geometry fibers over the line with the plane as the fiber. It is the only
geometry with discrete point stabilizers (the stabilizer is D8, the dihedral group
of order 8). An example of a manifold with this geometry can be obtained from
part (3) of Proposition 4.5.
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Chapter 5

Conclusion

We have thus studied the proof of Thurston’s theorem and understood a little
about the eight three-dimensional geometries. The main result involving these
is

Thurston’s geometrization conjecture Every oriented prime 3-manifold
can be cut along tori, so that the interior of each of the resulting manifolds has
a geometric structure with finite volume (that is, one of the eight geometries).

This was proved in 2003 by G. Perelman [5]. Corollaries of this result include
the following:

Thurston’s elliptization conjecture A closed 3-manifold with finite fun-
damental group is spherical.

Poincaré conjecture Every simply connected, closed 3-manifold is homeo-
morphic to the 3-sphere.
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